Biodegradation of Hard Keratins by Two Bacillus Strains
نویسندگان
چکیده
BACKGROUND Extensive quantities of keratinic by-products are disposed annually by animal-processing industry, causing a mounting ecological problem due to extreme resilience of these materials to enzymatic breakdown. There is a growing trend to apply cheap and environment-friendly methods to recycle keratinic wastes. Soil bacteria of profound keratinolytic potential, especially spore-forming rods from the genus Bacillus, play a significant role in keratinase-mediated biodegradation of keratins, therefore could be effective in hastening their biodegradation. Keratin hydrolysis in microbial cultures is one of the most promising techniques not only to utilize this protein but also to obtain valuable by products. OBJECTIVES The study was undertaken to investigate the biodegradation process of various keratinic materials by two Bacillus strains. MATERIALS AND METHODS Two keratinolytic strains, Bacillus cereus and B. polymyxa, were subject to cultures in the presence of several keratinic appendages, like chicken feathers, barbs and rachea of ostrich feathers, pig bristle, lamb wool, human hair and stratum corneum of epidermis, as main nutrient sources. Bacterial ability to decompose these waste materials was evaluated, at the background of keratinase and protease biosynthesis, in brief four-day cultures. Keratinolytic activity was measured on soluble keratin preparation and proteases were assayed on casein. Additionally, amounts of liberated proteins, amino acids and thiols were evaluated. Residual keratin weight was tested afterwards. RESULTS Both tested strains proved to be more adapted for fast biodegradation of feather β-keratins than hair-type α-keratins. B. cereus revealed its significant proteolytic potential, especially on whole chicken feathers (230 PU) and stratum corneum (180 PU), but also on separated barbs and rachea, which appeared to be moderate protease inducers. Keratinolytic activity of B. cereus was comparable on most substrates and maximum level obtained was 11 KU. B. polymyxa was found to be a better producer of keratinases, up to 32 KU on chicken feathers and 14 KU on both fractions of ostrich feathers. Its proteolytic activity was mostly revealed on stratum corneum and human hair. Stratum corneum was extensively degraded by both bacterial strains up to 99% - 87%, chicken feathers 47-56%, ostrich barbs and rachea, 28% and 35% at maximum, respectively. Keratin fibres of structures like human hair, lamb wool and pig bristle remained highly resilient to this short microbiological treatment, however certain extent of keratinase induction was also observed. CONCLUSIONS The obtained results prove that keratinolytic potential of both tested bacterial strains could be applied mainly in biodegradation of feathers, however, B. cereus and B. polymyxa differed in terms of keratinase and protease production on each of the substrates. Biodegradation of highly resilient structures like hair or pig bristle requires further analysis of process conditions.
منابع مشابه
Rapid Biodegradation of Methyl tert-Butyl Ether (MTBE) by Pure Bacterial Cultures
Two pure bacterial strains capable of rapid degrading methyl tert–butyl ether (MTBE) were isolated from an industrial wastewater treatment plant, identified and characterized. These strains are able to grow on MTBE as the sole carbon and energy sources and completely mineralize it to the biomass and carbon dioxide. The strains were identified as Bacillus cereus and Klebsiella terrigena. Bot...
متن کاملNovel Bacterial Strains Pseudomonas sp. and Bacillus sp. Isolated from Petroleum Oil Contaminated Soils for Degradation of Flourene and Phenanthrene
Flourene and phenanthrene are organic compounds with high hydrophobicity and toxicity. Being recalcitrant in nature they are accumulating in the environment at an alarming concentration, posing serious threat to living beings. Thus in the present study, microorganisms were screened for their ability to degrade these contaminants at high concentrations in least period of time. Two out of fifteen...
متن کاملNovel Bacterial Strains Pseudomonas sp. and Bacillus sp. Isolated from Petroleum Oil Contaminated Soils for Degradation of Flourene and Phenanthrene
Flourene and phenanthrene are organic compounds with high hydrophobicity and toxicity. Being recalcitrant in nature they are accumulating in the environment at an alarming concentration, posing serious threat to living beings. Thus in the present study, microorganisms were screened for their ability to degrade these contaminants at high concentrations in least period of time. Two out of fifteen...
متن کاملBiodegradation of Polychlorinated Biphenyls by and Isolated from Contaminated Soil
Polychlorinated biphenyls (PCBs) cause many significant ecological problems because of their low degradability, high harmfulness, and solid bioaccumulation.Two bacterial strains were isolated from soil that had been polluted with electrical transformer liquid for more than 40 years. The isolates were distinguished as Lysinibacillus macrolides DSM54Tand Bacillus firmus NBRC1530...
متن کاملپاکسازی زیستی آب های آلوده به نفت خام توسط باسیلوس های جدا شده ازحوضچه های نفتی
Background: Water poluted with crude oil or oil materials are one of the life enviorenment.Bioremedation is a simple method and economical for cleaning poluted water.the aim of this survey is to check the degradation of crude oil power with separated Bacillus from crude oil in Isfahan oil refinery. Methods: For this purpose polluted water with crude oil is used in Isfahan oil refinery.ch...
متن کامل